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The reason for the importance placed on knowing the probability
distribution for the different microstates is that once we have it, we
can compute key observables such as the average current flowing
through the channel or the average energy given by

〈E〉 =
N∑

i=1

Eip(Ei), (6.6)

where we have introduced the notation 〈· · · 〉 to indicate averages. What
this equation tells us is that to find the average energy of the sys-
tem, we sum over all of the energies of the possible microscopic
outcomes, each weighted appropriately by its probability p(Ei). One
class of averages that will come to centerstage throughout the book is
that concerned with the ligand occupancy, where we will compute the
probability that a given receptor is bound as a function of the ligand
concentration.
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The Tricks Behind the Math: Differentiation with Respect
to a Parameter The partition function serves as the analyt-
ical engine of statistical mechanics and permits us to directly
calculate quantities such as the free energy (G = −kBT lnZ) and
the average energy. To see the simple connection between the
partition function and the average energy, we invoke a use-
ful mathematical observation. Our interest is in the average
energy, which can be written as

〈E〉 = 1
Z

N∑

i=1

Eie−Ei/kBT , (6.7)

a result we obtain by substituting Equation 6.4 into Equa-
tion 6.6. Note that by virtue of the definition of the parti-
tion function as Z =

∑N
i=1 e−Ei/kBT , we can write the average

energy as

〈E〉 = −1
Z
∂

∂β
Z, (6.8)

where we have introduced the notation β = 1/kBT . The point
is that when we differentiate e−βEi with respect to β, the result
is −Eie−βEi , exactly the quantity we need to compute the aver-
age. We can go even further by using the identity d[ln f (x)]/dx =
(1/f )(df /dx). This permits us to rewrite Equation 6.8 as

〈E〉 = − ∂

∂β
lnZ. (6.9)

This very important trick will be used repeatedly for computing
key observables of biological interest such as the probability
that an ion channel is open and the average number of ligands
bound to a receptor (such as the number of oxygen molecules
bound to hemoglobin).

6.1.1 A First Look at Ligand–Receptor Binding

One of the most powerful uses to which we will put the tools devel-
oped in this chapter is to the broad class of binding interactions of
interest in biology. Figure 6.1 introduced an example of the kinds of
problems we will encounter and for which we can use the Boltzmann
distribution and the partition function. Examples of this kind of
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Figure 6.4: States and weights
diagram for ligand–receptor binding.
The cartoons show a lattice model of
the solution for the case in which
there are L ligands. In (A), the
receptor is unoccupied. In (B), the
receptor is occupied by a ligand and
the remaining L− 1 ligands are free in
solution. A given state has a weight
dictated by its Boltzmann factor. The
multiplicity refers to the number of
different microstates that share that
same Boltzmann factor (for example,
all of the states with no ligand bound
to the receptor have the same
Boltzmann factor).
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binding include the binding of oxygen to hemoglobin, the binding
of transcription factors to DNA, and the binding of acetylcholine to
the nicotinic acetylcholine receptor. To examine the physics of Fig-
ure 6.1, imagine there are L ligand molecules in the box characterized
by � lattice sites as well as a single receptor with one binding site as
shown. For simplicity, we ignore any configurational degrees of free-
dom associated with the receptor itself. Our ambition is to compute
the probability that a receptor is occupied by a ligand (pbound) as a
function of the number (or concentration) of ligands.

To see the logic of this calculation more clearly, Figure 6.4 shows
the states available to this system, as well as their energies, their
multiplicities, and overall statistical weights. The key point is that
there are only two classes of states, namely, (i) all of those states for
which there is no ligand bound to the receptor and (ii) all of those
states for which one of the ligands is bound to the receptor. The
neat feature of this situation is that although there are many real-
izations of each class of state, the Boltzmann factor is the same for
each realization of these classes of state as shown in Figure 6.4.

To compute the probability that a ligand is bound, we need to con-
struct a ratio in which the numerator is the weight of all states in
which one ligand is bound to the receptor and the denominator is the
sum over all states. This idea is represented graphically in Figure 6.5.
What the figure shows is that there are a host of different states in
which the receptor is occupied: first, there are L different ligands that
can bind to the receptor; second, the L− 1 ligands that remain behind
in solution can be distributed amongst the � lattice sites in many
different ways. In particular, we have

weight when receptor occupied = e
−βεb

bound ligand

×
∑

solution

e−β(L−1)εsol ,

free ligands

(6.10)

Figure 6.5: Probability of receptor
occupancy. The figure shows how the
probability of receptor occupancy can
be written as a ratio of the weights of
the favorable outcomes and the
weights of all outcomes. The notation
in the numerator instructs us to sum
over the Boltzmann factors for all
microstates of the system in which the
receptor is occupied.

pbound =

+S
states

S
states

S
states
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where we have introduced εb as the binding energy for the ligand and
receptor and εsol as the energy for a ligand in solution. The summa-
tion

∑
solution is an instruction to sum over all of the ways of arranging

the L− 1 ligands on the � lattice sites in solution, with each of those
states assigned the weight e−β(L−1)εsol . Since the Boltzmann factor is
the same for each of these states, what this sum amounts to is finding
the number of arrangements of the L− 1 ligands amongst the � lattice
sites, which yields

∑

solution

e−β(L−1)εsol = �!
(L− 1)![�− (L− 1)]!

e−β(L−1)εsol . (6.11)

The denominator of the expression shown in Figure 6.5 is the partition
function itself, since it represents the sum over all possible arrange-
ments of the system (both those with the receptor occupied and not)
and is given by

Z(L,�) =
∑

solution

e−βLεsol

none bound

+ e−βεb
∑

solution

e−β(L−1)εsol

ligand bound

. (6.12)

We have already evaluated the second term in the sum culminating in
Equation 6.11. To complete our evaluation of the partition function,
we have to evaluate the sum

∑
solution e−βLεsol over all of the ways of

arranging the L ligands on the � lattice sites, with the result

∑

solution

e−βLεsol = e−βLεsol
�!

L!(�− L)!
. (6.13)

In light of these results, the partition function can be written as

Z(L,�) = e−βLεsol
�!

L!(�− L)!
+ e−βεbe−β(L−1)εsol

�!
(L− 1)![�− (L− 1)]!

.

(6.14)

We can now simplify this result by using the approximation that

�!
(�− L)!

≈ �L, (6.15)

which is justified as long as �� L. The approximation amounts to tak-
ing the largest term in the sum that would result from resolving the
parentheses in Equation 6.15. To see why this is a good approxima-
tion, consider the case when � = 106 and L = 10, resulting in

106!
(106 − 10)!

= 106 × (106 − 1)× (106 − 2)× · · · × (106 − 9) ≈ (106)10.

(6.16)

The error made by effecting this approximation can be seen by multi-
plying out all the terms in parentheses in Equation 6.16 and keeping
the terms of order (106)9. We find that this next term has the value
45× (106)9, which is roughly four orders of magnitude smaller than
the leading term, demonstrating the legitimacy of the approximation.

With these results in hand, we can now write pbound as

pbound =
e−βεb

�L−1

(L− 1)!
e−β(L−1)εsol

�L

L!
e−βLεsol + e−βεb

�L−1

(L− 1)!
e−β(L−1)εsol

. (6.17)
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This result can be simplified by multiplying the top and bottom by
(L!/�L)eβLεsol , resulting in

pbound =
(L/�)e−β�ε

1+ (L/�)e−β�ε , (6.18)

where we have defined �ε = εb − εsol. The overall volume of the box
is Vbox and this permits us to rewrite our results using concentration
variables. In particular, this can be written in terms of ligand concen-
tration c = L/

(
�Vbox

)
, where �Vbox is the total volume considered. We

introduce c0 = 1/Vbox, a “reference” concentration (effectively, an arbi-
trary “standard state”) corresponding to having all sites in the lattice
occupied. This results in

pbound =
(c/c0)e−β�ε

1+ (c/c0)e−β�ε
. (6.19)

This classic result goes under many different names depending upon
the field (such as the Langmuir adsorption isotherm or a Hill function
with Hill coefficient n=1). Regardless of names, this expression will
be our point of departure for thinking about all binding problems.
Though many problems of biological interest exhibit binding curves
that are “sharper” than this one (that is, they exhibit cooperativity—to
be discussed in detail in Chapter 7), ultimately, even those curves are
measured against the standard result derived here.

To make a simple estimate of the parameters appearing in Equa-
tion 6.19, we choose the size of the elementary boxes in our lattice
model to be 1 nm3, which corresponds to c0 ≈ 0.6 M. This is com-
parable to the standard state of 1 M used in many biochemistry
textbooks. Given this choice of standard state, we can plot pbound as
a function of the concentration of ligands for different choices of the
binding energy with characteristic binding energies ranging from −7.5
to −12.5 kBT . The result is plotted in Figure 6.6. As said before, many
problems in statistical mechanics can be seen as the playing out of a
competition between energetic and entropic contributions to the over-
all free energy. In this case, the interesting concentration of ligand
corresponds to that choice of L for which the two terms in the denom-
inator of Equation 6.17 are approximately equal. Equality of these two
terms roughly amounts to the statement that the entropy lost in steal-
ing one of the ligands from solution to bind it to the receptor is just
made up for by the energetic gain (�ε) associated with binding the lig-
and to the receptor. Notice also that this concentration corresponds
to having half occupancy (pbound = 0.5). At low concentrations, the
entropic term is dominant, while at high enough concentrations, the
energetic term dominates.
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Figure 6.6: Average occupancy as a
function of ligand concentration. The
figure shows the average number of
ligands bound as a function of the
number of ligands in solution. The
plot shows curves for three choices of
�ε: −7.5, −10, and −12.5 kBT , and a
standard state c0 = 0.6 M. The
binding energies are also translated
into the language of equilibrium
dissociation constants.

6.1.2 The Statistical Mechanics of Gene Expression: RNA
Polymerase and the Promoter

An exciting application of the ideas on ligand–receptor binding devel-
oped above is to the problem of gene regulation. Cells make “deci-
sions” all the time. One of the key manifestations of cellular decision
making is the expression of different genes at different places at dif-
ferent times and to different extents. In Section 3.2.1, we introduced
the central dogma. However, our treatment of replication, transcrip-
tion, and translation was barren because it failed to acknowledge all of
the possible cellular interventions that can occur during each of these
processes. Figure 6.7 shows a more complete view of the processes
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which tells us that the probability of a given state is proportional to

the Gibbs factor (that is, p(E(1)s , N (1)
s ) ∝ e−(E

(1)
s −μN(1)

s )/kBT ). As a result, the
probability of finding the system in state i with energy E (i)s and particle
number N(i)

s is

p(E(i)s , N (i)
s ) = e−β(E

(i)
s −μN(i)

s )

Z , (7.15)

a result known as the Gibbs distribution, where we have defined the
grand partition function as

Z =
∑

i

e−β(E
(i)
s −N (i)

s μ). (7.16)

This equation instructs us to sum over all of the possible microstates
(labeled by i).

In Section 6.1, we argued that the partition function serves as the
analytical engine of statistical mechanics and illustrated that claim by
showing how the average energy 〈E〉 can be computed as a derivative
of the partition function (see Equation 6.9 on p. 241). The grand par-
tition function permits us to go further and to compute the average
number of particles in our system as

〈N〉 = 1
β

∂

∂μ
lnZ. (7.17)

To see this, we note that the average particle number can be written as

〈N〉 = 1
Z
∑

i

Nie
−β(Ei−Niμ), (7.18)

where we have dropped the cumbersome notation involving subscript
“s” to signify that we are referring to the “system.” Indeed, from now
on, whenever we invoke the Gibbs distribution, we will tacitly assume
that the terms Ei and Ni refer exclusively to our system, which is in
contact with a hybrid thermal–particle reservoir. What this perspec-
tive offers from the point of view of our microscopic models is that
the chemical potential serves as a shorthand for the explicit treatment
of the reservoir.

7.2.2 Simple Ligand–Receptor Binding Revisited

To apply the Gibbs distribution, we revisit the problem of ligand–
receptor binding introduced in Sections 6.1.1 (p. 241) and 6.4.1
(p. 270). In this case, we imagine a slightly different setup where all
of our attention is focused on a single receptor that is in contact with
the surrounding heat bath and particle reservoir. The beauty of treat-
ing the problem in this way is that it will provide a much simpler
treatment of the particles in the reservoir than was offered by the
Boltzmann distribution. Further, this approach will permit us to gen-
eralize easily to more complicated cases such as hemoglobin in which
there are multiple binding sites. In this case, the receptor can be in
one of two states, bound or unbound, with σ serving as an indicator
of the state of binding, with σ = 0 corresponding to the unbound state
and σ = 1 to the bound state. The energy in this case is E = εbσ , where
εb < 0, revealing a favorable interaction between ligand and receptor.
The particular choices of σ are arbitrary and had we made different
choices, then we would have had to make a corresponding change in
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the energy. The virtue of this particular choice of the σ ’s is that 〈σ 〉
reports the average number of bound ligands. The states and weights
for our ligand–receptor problem are shown in Figure 7.10.

Using the grand canonical distribution as the basis of our evaluation
of 〈N〉, we need to evaluate

Z =
∑

states

e−β(Estate−Nstateμ), (7.19)

where we have switched notation to sum over “states” instead of the
nondescript index i. The variable β = 1/kBT reflects the contact of the
system with a thermal reservoir and the presence of μ reflects contact
with a particle reservoir. The sum over states is very simple since
there are only two states to consider, namely, (i) the state where the
receptor is not occupied, which is characterized by σ = 0, and (ii) the
state where the receptor is occupied, which is characterized by σ = 1.
As a result, we write

Z =
1∑

σ=0

e−β(εbσ−μσ). (7.20)

The resulting sum is of the form

Z = 1+ e−β(εb−μ). (7.21)

The average number of ligands bound is equal to the normalized
weight of the occupied state, and is given by

〈N〉 = e−β(εb−μ)

1+ e−β(εb−μ)
. (7.22)

This result can also be computed by taking the derivative as described
in Equation 7.17.

STATE WEIGHT
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Figure 7.10: States and weights for
ligand–receptor binding. The
schematic shows the states of the
receptor and their corresponding
statistical weights as computed using
the Gibbs distribution.

For the case of a receptor that can bind only one ligand, the aver-
age number of bound ligands, 〈N〉, is equivalent to the quantity pbound
introduced in Chapter 6. As a result, the calculation done here should
yield precisely the same result we found in Equation 6.19 (p. 244).
To see that equivalence, we recall that the chemical potential of an
ideal solution can be written as μ = μ0 + kBT ln(c/c0) as shown in Sec-
tion 6.2.2 (p. 262). If we substitute this expression for the chemical
potential into Equation 7.22, we find

〈N〉 = (c/c0)e−β�ε

1+ (c/c0)e−β�ε
, (7.23)

where we have introduced the notation �ε = εb − μ0. Here �ε is the
energy difference upon taking the ligand from solution and placing it
on the receptor. This result is equivalent to that found in Chapter 6. We
have revisited the problem of ligand–receptor binding for two reasons.
First, the present treatment gives us a chance to see the idea of our
internal state variables σ in action. Second, this example also served
as our maiden example of the use of the Gibbs distribution which will
be used again to describe O2 binding in hemoglobin, the equilibrium
accessibility of nucleosomes, and other problems as well.

7.2.3 Phosphorylation as an Example of Two Internal
State Variables

The idea of a two-state system is extremely powerful in biology
and applies to many cases beyond those already mentioned. One
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amino acid can also be rapidly dephosphorylated by a protein phos-
phatase enzyme, the signal can be just as quickly switched off, and
then switched back on again if need be, without the need to degrade
or resynthesize the transcription factor. Interestingly, for most two-
component systems, the phosphatase activity is carried out by the
same sensor histidine kinase protein that was responsible for the
phosphorylation in the first place.

7.2.4 Hemoglobin as a Case Study in Cooperativity

In Section 4.2 (p. 143), we argued that hemoglobin has served as the
classic example of ligand–receptor binding. One of the rich features
offered by hemoglobin above and beyond the results for simple
ligand–receptor binding we have already obtained in Sections 6.1.1
(p. 241), 6.4.1 (p. 270), and 7.2.2 is the existence of cooperativity.
Cooperativity refers to the fact that the binding energy for a given
ligand depends upon the number of ligands that are already bound
to the receptor. Intuitively, the cooperativity idea results from the
fact that when a ligand binds to a protein, it will induce some con-
formational change. As a result, when the next ligand binds, it finds
an altered protein interface and hence experiences a different binding
energy (characterized by a different equilibrium constant). This effect
is reflected in binding data as shown in Figure 4.4 (p. 144). From the
point of view of statistical mechanics, we will interpret cooperativity
as an interaction energy—that is, the energies of the various ligand
binding reactions are not simply additive.

The Binding Affinity of Oxygen for Hemoglobin Depends upon
Whether or Not Other Oxygens Are Already Bound

In keeping with the overarching theme of the chapter, our treatment
of ligand–receptor binding in the classic case of hemoglobin can be
couched in the language of two-state occupation variables. In par-
ticular, for hemoglobin, we describe the state of the system with
the vector (σ1, σ2, σ3, σ4), where σi takes the values 0 (unbound) or 1
(bound) characterizing the occupancy of site i within the molecule.
Figure 4.6 (p. 146) showed the structure of hemoglobin revealing the
four binding sites for oxygen molecules. One of the main goals of a
model like this is to address questions such as the average number
of bound oxygen molecules as a function of the oxygen concentration
(or partial pressure).

STATE WEIGHT

1

e–b e m( )–

e–b e m( )–

e–b e m(2 J )+ 2–

Figure 7.17: States and weights
diagram for a toy model of dimoglobin.
Each state of occupancy is
characterized by a pair (σ1, σ2) denoting
whether the first and second sites are
occupied by an oxygen molecule. The
weights show the Gibbs factors for
each of the different states.

A Toy Model of a Dimeric Hemoglobin (Dimoglobin) Illustrate the Idea
of Cooperativity

In order to make analytic progress in revealing the precise nature
of cooperativity, we examine a toy model that reflects some of the
full complexity of binding in hemoglobin. In particular, we imag-
ine a fictitious dimoglobin molecule that has two O2-binding sites.
(Indeed, some clams actually do have a dimeric hemoglobin instead of
a tetrameric hemoglobin like most other animals.) We begin by iden-
tifying the states and weights as shown in Figure 7.17. This molecule
is characterized by four distinct states corresponding to each of the
binding sites of the dimoglobin molecule being either occupied or
empty. For example, if binding site 1 is occupied then we have σ1 = 1,
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Figure 7.18: Probabilities of oxygen
binding to dimoglobin. The plot
shows the probability of finding no
oxygen molecules bound to
dimoglobin (p0), that of finding one
molecule bound (p1), and that of
finding two molecules bound (p2).
The parameters used are �ε = −5 kBT ,
J = −2.5 kBT , and c0 = 760 mmHg.

and if it is unoccupied then σ1 = 0. The energy of the system can be
written as

E = ε(σ1 + σ2)+ Jσ1σ2, (7.29)

where ε is the energy associated with an oxygen being bound to one
of the two sites. The parameter J is a measure of the cooperativity and
implies that when both sites are occupied, the energy is not just the
sum of the individual binding energies.

The grand partition function is obtained by summing over the four
states shown in Figure 7.17 and is given by

Z = 1

unoccupied

+e−β(ε−μ) + e−β(ε−μ)

single occupancy

+ e−β(2ε+J−2μ)

both sites occupied

. (7.30)

With the partition function in hand, we can compute the probabilities
of each of the distinct classes of states: unoccupied, single occupancy,
double occupancy. In Figure 7.18, we plot these probabilities as a
function of the oxygen partial pressure.

Using Equation 7.17, we can find the average occupancy as a
function of the ligand chemical potential as

〈N〉 = 2e−β(ε−μ) + 2e−β(2ε+J−2μ)

1+ e−β(ε−μ) + e−β(ε−μ) + e−β(2ε+J−2μ)
. (7.31)

This simple result now permits us to write the occupancy in terms of
the concentration of oxygen by remembering that μ = μ0 + kBT ln(c/c0)

(this was shown in Section 6.2.2 on p. 262), and it is given by

〈N〉 = 2(c/c0)e−β�ε + 2(c/c0)
2e−β(2�ε+J)

1+ 2(c/c0)e−β�ε + (c/c0)
2e−β(2�ε+J)

, (7.32)

where we define �ε = ε − μ0. This result is shown in Figure 7.19. To
further probe the nature of cooperativity, a useful exercise is to exam-
ine the occupancy in the case where the interaction term J is zero. In
this case, we find the average occupancy is given by the sum of two
independent single-site occupancies as

〈N〉 = 2
(c/c0)e−β�ε

1+ (c/c0)e−β�ε
. (7.33)
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Figure 7.19: Average number
of oxygen molecules bound to
dimoglobin as a function of oxygen
concentration. The parameters used
to make the plots are
�ε = εb − μ0 = −5 kBT ,
c0 = 760 mmHg and J = 0 (no
cooperativity), J = −2.5 kBT and
J = −5 kBT .
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The Monod–Wyman–Changeux (MWC) Model Provides a Simple Exam-
ple of Cooperative Binding

One of the classic two-state models for binding is the Monod–Wyman–
Changeux (MWC) model for cooperative binding. The essence of the
model is that the protein of interest can exist in two distinct confor-
mational states known as “tense” (T) and “relaxed” (R). In the absence
of ligand, the T state of the protein is favored over the R state. We
represent this unfavorable energy cost to access the R state with the
energy ε. However, the interesting twist is that the ligand-binding reac-
tion has a higher affinity for the R state. This has the effect that with
increasing ligand concentration, the balance will be tipped toward the
R state, despite the cost, ε, of accessing that state. We label the binding
energies εT and εR, which signify the favorable energy upon binding
to the molecule when it is in the T and R states, respectively. If we
maintain our use of σ1 and σ2 to characterize the state of ligand occu-
pancy of our toy model of dimoglobin and, in addition, introduce the
variable σm to indicate whether the molecule is in the T (σm = 0) or R
(σm = 1) state, then the energy of our system can be written as

E = (1− σm)εT

2∑

i=1

σi + σm

⎛

⎝ε + εR
2∑

i=1

σi

⎞

⎠. (7.34)

In order to find the occupancy (that is, 〈N〉) of the dimoglobin, we
need to compute the grand partition function. As usual, it is illumi-
nating to depict the various allowed states and their corresponding
statistical weights as shown in Figure 7.20. There are a total of eight
distinct states and we can sum over all of them to obtain the grand
partition function

Z = 1+ 2e−β(εT−μ) + e−β(2εT−2μ)

T terms

+ e−βε(1+ 2e−β(εR−μ) + e−β(2εR−2μ))

R terms

. (7.35)

Figure 7.20: States and weights for
the MWC model. The upper row shows
the occupancies for the T state of the
molecule and the lower row shows the
occupancies for the R state of the
molecule. The set of allowed states
amounts to permitting 0, 1, or 2 O2
molecules to bind to either the T or the
R state of the molecule.
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As usual, we can find the average occupancy by evaluating

〈N〉 = kBT
∂

∂μ
(lnZ),

with the result

〈N〉 = 2
Z [x + x2 + e−βε(y + y2)], (7.36)

where we have defined x = (c/c0)e−β(εT−μ0) and y = (c/c0)e−β(εR−μ0). The
average number of bound ligands as a function of the concentration
of oxygen is shown in Figure 7.21.
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Figure 7.21: Average number of
bound receptors in dimoglobin for the
MWC model. The dimensionless
concentration is written as
x = (c/c0)e

−β(εT−μ0), where εT is the
binding free energy of the ligand in
the tense state. �ε is the difference
between the binding energy in the
relaxed and tense states. For the plots
shown here, ε = 2 kBT .

Using the hypothetical molecule dimoglobin, we have examined oxy-
gen binding from several different perspectives. The first model we
introduced is mechanistically more detailed. On the other hand, in
many practical cases involving real proteins the coupling energies
cannot be easily measured. In such circumstances, the MWC approxi-
mation allows quantitative treatments of cooperative protein behavior
using only two states and a few parameters. This can be particularly
useful when there are many different ligands interacting with the same
protein, each of which can affect its overall enzymatic activity.

Statistical Models of the Occupancy of Hemoglobin Can Be Written
Using Occupation Variables

Using the simple occupation variable formalism introduced above, we
can now examine a hierarchy of models that have been set forth in the
attempt to understand cooperative oxygen binding in hemoglobin. In
each of these cases, the occupation variable language permits a sim-
ple statement of the degree of oxygen binding. Further, the energy
of the system itself both with and without cooperativity may be eas-
ily written in this language. In particular, we now characterize the
binding state of the hemoglobin molecule with four state variables,
{σ1, σ2, σ3, σ4}. Each of these variables can take the value 0 or 1, with
σα = 0 corresponding to site α unoccupied and σα = 1 corresponding to
site α occupied by an oxygen. Figure 7.22 shows a series of models of
hemoglobin binding that account for the cooperativity with different
degrees of sophistication.

There is a Logical Progression of Increasingly Complex Binding
Models for Hemoglobin

Noncooperative Model We begin with the simplest model, in which
the binding on the different sites is independent. In this case, the
energy of the system is given by

E = ε
4∑

α=1

σα, (7.37)

where ε is the energy associated with an oxygen molecule binding to
one of the sites on hemoglobin. As usual, the injunction of statisti-
cal mechanics is to use the energy in order to compute the partition
function. In this case, the grand partition function corresponds to
summing over the 16 possible states of the system corresponding
to all of the choices of the σi. More concretely, the grand partition
function is written as

Z =
1∑

σ1=0

1∑

σ2=0

1∑

σ3=0

1∑

σ4=0

e−β(ε−μ)
∑4
α=1 σα . (7.38)
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By noting that each of the terms is independent, this may be simplified
to the form

Z =
1∑

σ1=0

e−β(ε−μ)σ1

1∑

σ2=0

e−β(ε−μ)σ2

1∑

σ3=0

e−β(ε−μ)σ3

1∑

σ4=0

e−β(ε−μ)σ4 . (7.39)

Figure 7.22: Hierarchy of models
that can be used to characterize the
cooperativity in oxygen binding to
hemoglobin. In each case, four state
variables {σ1, σ2, σ3, σ4} are used to
characterize whether the four sites are
occupied by oxygen or not. The
difference from one model to the next
is how the energy depends upon the
four state variables. These differences
are reflected in the statistical weights
for the different states.

These sums are each evaluated to 1+ e−β(ε−μ) and, as a result, the total
partition function is of the form

Z = (1+ e−β(ε−μ))4. (7.40)

To find the occupancy of a given hemoglobin molecule, we resort to
the usual trick introduced in Equation 7.17. For the result given in
Equation 7.40, this yields

〈N〉 = 4e−β(ε−μ)

1+ e−β(ε−μ)
. (7.41)

We can rewrite this result in terms of the oxygen concentration by
using our simple model of the chemical potential, namely, μ = μ0 +
kBT ln(c/c0), with the result that the occupancy is given by

〈N〉 = 4
(c/c0)e−β(ε−μ0)

1+ (c/c0)e−β(ε−μ0)
. (7.42)

Note that this result is just four times the result we would obtain for a
single binding site—ligand binding to the different sites is completely
independent. If we compare this model with observed oxygen bind-
ing curves as shown in Figure 7.23, we see that the noncooperative
binding model is completely inconsistent with the data.
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Figure 7.23: Hemoglobin binding.
Comparison of the oxygen binding
isotherms for different models of
hemoglobin using the two-level
system description. (Data from
K. Imai, Biophys. Chem. 37:1, 1990.)

Pauling Model The next model in this hierarchy of models that can
be written in the language of the two-state system is the so-called
Pauling model. In this case, there is no change to the way in which
we characterize the system using the set of variables {σ1, σ2, σ3, σ4}.
What changes from one example to the next is our choice of energy
function. In the case of the Pauling model, the physical content of
the cooperativity arises because it is assumed that there is a pairwise
interaction between oxygens on different sites. If we think of the four
binding sites as the vertices of a tetrahedron, there are six interactions
corresponding to the six edges of the tetrahedron. If we label the four
vertices 1, 2, 3, and 4, these pairwise interactions are between 1 and
2, 1 and 3, etc. and there are a total of six distinct such interactions.

Within this model, the energy of the system is written in the form

E = ε
4∑

α=1

σα + J
2

∑′

(α,γ )

σασγ , (7.43)

where the sums over α and γ run from 1 to 4, the prime
∑′ instructs

us not to include terms in the sum when α = γ , and J is divided by
2 to account for the presence of terms like σ1σ2 and σ2σ1 which both
occur in the sum. Whenever two different sites are occupied, there is a
corresponding term in the energy with a contribution J. The partition
function corresponding to this energy is given by

Z =
1∑

σ1=0

1∑

σ2=0

1∑

σ3=0

1∑

σ4=0

e−β(ε−μ)
∑4
α=1 σα−β(J/2)

∑′
α,γ σασγ , (7.44)

which once again corresponds to summing over all 16 states of occ-
upancy of the hemoglobin molecule by its partner oxygens. As before,
the partition function can be evaluated analytically and is given by

Z = 1

0 bound

+ 4e−β(ε−μ)

1 bound

+ 6e−2β(ε−μ)−βJ

2 bound

+ 4e−3β(ε−μ)−3βJ

3 bound

+ e−4β(ε−μ)−6βJ

4 bound

.

(7.45)

Once the partition function is in hand, computing the average occu-
pancy is a matter of computing a single derivative of the form given
in Equation 7.17, resulting in

〈N〉 = 4e−β(ε−μ) + 12e−β(ε−μ)−βJ + 12e−3β(ε−μ)−3βJ + 4e−4β(ε−μ)−6βJ

1+ 4e−β(ε−μ) + 6e−2β(ε−μ)−βJ + 4e−3β(ε−μ)−3βJ + e−4β(ε−μ)−6βJ
.

(7.46)
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If we adopt the notation j = e−βJ and x = (c/c0)e−β(ε−μ0), then we are
left with

〈N〉 = 4x + 12x2j + 12x3j3 + 4x4j6

1+ 4x + 6x2j + 4x3j3 + x4j6
. (7.47)

The beauty of this model is that it is entirely minimalistic and involves
only two free parameters. Further, this model reduces to the nonco-
operative model for a particular choice of parameters. In particular,
if J = 0 (that is, j = 1), this abolishes the cooperativity and we restore
our earlier result of Equation 7.42. In the problems at the end of the
chapter, the reader is invited to examine the data in Figure 7.23 using
this model.

Adair Model The next level in the hierarchy of models that we exam-
ine is the so-called Adair model, which goes beyond the Pauling model
in accounting for three- and four-body interactions. What this means
concretely is that if three sites are occupied by oxygens, there is an
energy that is different than the sum of all of the pair interactions.
The reason for the proliferation of parameters (four parameters in
the Adair model, in comparison with two in the Pauling model) is
to account for the richness of the binding data, which can include
competitive binding by other ligands and mutants of the hemoglobin
protein. The reader is referred back to Figure 7.22 to get a sense for
the types of interactions included in the Adair model. The energy in
the Adair model is written as

E = ε
4∑

α=1

σα + J
2

∑

α,γ

′
σασγ + K

3!

∑

α,β,γ

′
σασβσγ + L

4!

∑

α,β,γ ,δ

′
σασβσγ σδ, (7.48)

where the parameters K and L capture the energy of the three- and
four-body interactions, respectively. Note that the sums for the terms
involving the parameters K and L are only over those cases where the
σ ’s refer to different binding sites as indicated by the prime on the
summation sign.

The grand partition function for this model has the same basic struc-
ture as we found in the previous cases. In particular, we are invited
to sum over the 16 distinct binding configurations of the molecule,
with each one assigned the appropriate energy. This results in the
somewhat daunting expression

Z =
1∑

σ1=0

1∑

σ2=0

1∑

σ3=0

1∑

σ4=0

exp

⎡

⎣−β(ε − μ)
4∑

α=1

σα − J
2

∑

α,β

′
σασβ

−K
3!

∑

α,β,γ

′
σασβσγ − L

4!

∑

α,β,γ ,δ

′
σασβσγ σδ

⎤

⎦ . (7.49)

On the other hand, this expression is not nearly as bad as it looks, and
the partition function can be evaluated, resulting in

Z = 1

0 bound

+ 4e−β(ε−μ)

1 bound

+ 6e−2β(ε−μ)−βJ

2 bound

+ 4e−3β(ε−μ)−3βJ−βK

3 bound

+ e−4β(ε−μ)−6βJ−4βK−βL

4 bound

. (7.50)

As before, the occupancy is obtained by evaluating the derivative
with respect to the chemical potential using Equation 7.17, and this
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results in

〈N〉 = 4x + 12x2j + 12x3j3k+ 4x4j6k4l
1+ 4x + 6x2j + 4x3j3k+ x4j6k4l

, (7.51)

where we have introduced the notation k = e−βK and l = e−βL. In the
absence of the interaction terms (that is, j = k = l = 1), we once again
recover the result in Equation 7.42.

Another way of viewing the results of this section is shown in
Figure 7.24. These plots illustrate the probability of the various
allowed states of the system as a function of the concentration of oxy-
gen. In particular, we plot the probability of finding no oxygen bound
(p0), one oxygen bound (p1), and so on. By comparing Figures 7.24(A)
and (B), we see that in the case of cooperative binding, the interme-
diate states are effectively eliminated, with the dominant states being
either unoccupied or saturated. The reader is invited to examine this
result in more detail in the problems at the end of the chapter.
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Figure 7.24: Probability of various
states in hemoglobin binding. The plot
shows the probabilities of the states
p0, p1, p2, p3, and p4, where pn refers
to the probability of the state with n
oxygen molecules bound to the
hemoglobin. (A) Adair model
treatment of the probabilities of the
different states (parameters shown
after Equation 7.52). (B) Plot for the
case in which there is no cooperativity
in the model (Kd = 8.07 mmHg).

We have considered a hierarchy of models for the binding of oxygen
in hemoglobin. As shown in the analysis, all of these models can be
written in terms of the two-state occupation variables {σi} and their
differences correspond to the different ways in which they handle
cooperativity (which we conveniently model as interactions between
the different binding sites). One of the key outputs of these mod-
els is the binding curves, which show how the occupancy depends
upon the concentration of oxygen. We compare these different models
in Figure 7.23, where it is seen that the Pauling and Adair mod-
els have introduced cooperativity. The parameters we use to obtain
these curves come from measurements on the equilibrium constants
for hemoglobin binding in which the binding curves are fit to the
functional form

〈N〉 = 4K1x + 12K1K2x2 + 12K1K2K3x3 + 4K1K2K3K4x4

1+ 4K1x + 6K1K2x2 + 4K1K2K3x3 + K1K2K3K4x4
, (7.52)

with the parameters K1 = 1.51× 10−2mmHg−1, K2 = 1.52× 10−2

mmHg−1, K3 = 3.47× 10−1 mmHg−1, and K4 = 3.2 mmHg−1. “Cooper-
ativity” is one of the key facts of biochemical interaction.

7.3 Ion Channels Revisited: Ligand-Gated
Channels and the MWC Model

Earlier in the chapter, we began our discussion of two-state systems
by appealing to the example of ion channels. We noted that there are
many different kinds of driving forces that can tip the balance between
the closed and open states. Ligand-gated channels are ion channels
whose opening and closing is regulated by binding of ligands to the
protein that makes up the channel. One of the best studied examples
is the nicotinic acetylcholine receptor, which plays a role in the neu-
romuscular junction. It has two binding sites for acetylcholine and
the equilibrium between the open and closed state of the channel
is shifted toward the open state by the binding of acetylcholine, as
shown in Figure 7.25.

To study the opening of the channel as a function of acetylcholine
concentration we make use of a statistical mechanics model of a chan-
nel, which is analogous to the Monod–Wyman–Changeux (MWC) model
of dimoglobin discussed in Section 7.2.4. In the dimoglobin case, the
protein was in the T or R state and the ligand had a higher affinity for
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